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Contributions of this Study

Among the new significant aspects of the present work are (i) the
treatment of the far-field boundary, (ii) the use of C-grid topology, with
the branch-cut singularity treated analytically, (iii) eQaluation of the
effect of the envelope of prevailing initial states and, finally, (iv) the
ability to employ streakline/pathline ’visualization’ to probe the unsteady
features prevailing in vortex-dominated flows. The far-field boundary is
placed at infinity, using appropriate grid stretching. This contributes to
the accuracy of the solutions, but raised a number of important issues which
needed to be resolved; this includes determining the equivalent
time-dependent circulation for the pitching airfoil. A secondary counter-
clockwise vortex erupts from within the boundary layer and immediately
pinches off the energetic leading-edge shear layer which then, through
hydrodynamic instability, rolls up into the dynamic stall vortex. The
streakline/pathline visualization serves to provide information for insight

into the physics of the unsteady separated flow.

t This research is supported, in part, by AFOSR Grants (Nos. 87-0074 and
90-0249), with supercomputer resources being provided by the Ohio

Supercomputer Center.
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Physical Characteristics and Background

Specifically, the large amptitude rapid pitching motion associated with
the initiation of a high angle-of-attack maneuver typically leads to the
generation of a dynamic stall vortex whose evolution results in large
transient lift, drag and moment that can, for short periods of time, produce
loadings significantly larger than those expected during either steady, or
quasi-steady flight. Indeed, the successful completion of am abrupt,
drastic maneuver can depend upon the ability of holding the dynamic stall
vortices in place, at least for the duration of the maneuver, and
subsequently bleeding the excess accumulated vorticity in a controlled
manner into the wake. Abrupt shedding of large amounts of locally
concentrated vorticity can so rapidly alter the 1lift distribution on a body
that a tumbling loss-of-control incident can occur, as the associated rapid
changes in moment distribution cannot be tolerated.

Recently, Carr (1988) has comprehensively reviewed the literature on
the dynamic stall phenomenon and has also articulated the effect of key
parameters on this phenomenon. Helin (1989) has also highlighted recent
advances in the field, while stressing the importance of unsteady
aerodynamics for highly maneuverable and agile aircraft. 1In addition, he
has raised the important issue of the effect of flow separation on the
formation of the energetic dynamic-stall vortex. These two reviews
adequately point out some of the unresolved issues associated with the

problem of dynamic stall.

On the Analysis of Dynamic Stall

The unsteady Navier-Stokes analysis of K. Ghia, Osswald and Ghia (1985)
and Osswald, K. Ghia and U. Ghia (1986) is modified to permit arbitrary

three degree-of-freedom maneuvers, using body-fixed coordinates and a C-grid
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topology. This formulation not only permits pitching motions, but also
plunging and in-plane accelerating or decelerating motions; typically, the
airfoil is pitched about the quarter-chord axis. The problem is formulated
using vorticity and stream function as dependent variables in a non-using
body-fixed reference frame in generalized coordinates. This formulation
offers the important advantage over the primitive-variable formulation that
the form of the governing equations in inertial and non-inertial reference
frames is identical. The far-field boundaries are located at true infinity
for this subsonic flow with its fully elliptic nature. The conformal
mapping techniques used lead to analytical determination of the
corresponding inviscid flow; this inviscid flow constitutes the true far-
field boundary condition; by contrast, the studies of Visbal and Shang
(1988) and Ekaterinaris (1989) place the far-field boundary at a finite
distance from the airfoil, and employ free-stream conditions on the upstream
boundary and zero streamwise gradients downstream. The present study uses
an analytically determined clustered conformal grid, thereby avoiding
numerical error in the computation of the metrics. The C-grid topology
employed introduces a singularity at the trailing edge (TE) and all along
the branch cut. For the latter, this singularity is treated using the
method of analytic continuation, as developed by Osswald, K. Ghia and U.
Ghia (1985). The conditions of zero slip and zero normal velocity at the
surface of the airfoil are implemented appropriately in terms of the stream
function and vorticity. At the TE, the singularity in the grid does play a
role in determination of the stream function, which is obtained by
satisfying the Kutta condition. The vorticity at the TE is determined using
the analysis of Osswald, K. Ghia and U. Ghia (1989). The direct numerical

simulation (DNS) methodology developed by the authors is used to solve the
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vorticity transport and stream function equations. Central differences are
used for all spatial derivatives and no artificial dissipation is added
explicitly.

Results and Discussion

In the present study, simulations are carried out for a NACA 0015
airfoil undergoing constant é—pitch-up motion. Two flow configurations are
attempted and they are for Re = 103 and 104. Configuration I, with the

lower Re = 103, is used in the development phase, since it permits the use

of a smaller grid (274, 76) of which 114 grid points are placed on the body.

On the other hand, configuration IT, with Re = 104, is used to compare the
results of the experiments of Walker, Helin and Strickland (1985) who
considered Re = 45000. This latter configuration was run using a (444,101)
grid with 204 grid points on the body; the size of the grid was selected

based on the results of Visbal and Shang (1988) who had carried out a grid

study and selected this size. In addition, the same constant é-pitch-up
motion as used by them is also implemented here and corresponds to

nondimensional pitch rate QO= 0.2 with nondimensional acceleration time
ty = 0.5, and pivot axis location measured from airfoil leading edge

Xg= 0.25.

Results of configuration I, in Fig. 1, show that the dynamic stall
vortex with its clockwise spinning fluid evolves as the shear layer from the
leading edge is pushed away by the counterclockwise spinning vortex close to
the body surface and subsequently the shear layer rolls up and forms a
dynamic stall vortex. It appears that the eruption of counterclockwise
spinning vortex from within the boundary layer is important to formation of

the dynamic stall vortex near the leading edge.
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Results for configuration II, in Fig. 2, show that 6 = Oo run exhibits
unsteady results as opposed to the steady-state results obtained by Visbal
and Shang. Their steady-state solutions could strictly be a consequence of
the use of both explicit as well as implicit smoothing, i.e., artificial
viscosity, to maintain stability in their numerical calculations, which
Vemployed the method of Beam and Warming. Present results for configuration
II, although not depicted here, show that there are grid related
oscillations near the leading edge in the vorticity contours and grid
structure and perhaps its density neceds to be altered before generating new
results and analyzing them. Still, in this case, also the secondary
counterclockwise vortex erupts from within the boundary layer on the surface
to form the dynamic stall vortex. Unlike wind-tunnel tests, the numerical,
experiment in the present study computes the vorticity field directly. By
evaluating various individual terms in the vorticity- transport equation, it
is possible to examine vorticity accumulation and generation at the body
surface as well as in the flux from the boundary to reveal the underlying
mechanism and the role of unsteady separation on the evolution of the stall

vortex. This is possible once a comprehensive set of results are obtained,

In summarizing, the constant é-pitch-up experiment of Walker et al.
(1985) is simulated using direct numerical simulation and an unsteady NS
analysis. The preliminary results obtained so far provide the flow
structure and the evidence that eruption of secondary counterclockwise
vortex near the quarter chord point triggers the formation of the dynamic
stall vortex. However, additional results are essential to obtain the
budget of vorticity dynamics and to shed further insight into this mechanism
underlying the evolution of dynamic stall vortex just stated and its
relation to unsteady separation. Based on the exlsting results of a video
presentation of the numerically simulated evolution, convection and shedding
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of the dynamic stall vortex is created, but for quantitative information
comprehensive data is needed. It should be added that, in the earlier
results for flow past a static Joukowski airfoil at 53°, the authors have
seen the formation of a secondary counterclockwise vortex before the leading
edge shear layer forms a large clockwise spinning vortex.
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MANEUVERING THETA = 0.000 DEG CL= 03732

RE = 10000.0 THTADOT =  0.000 Cp= 0.0459
TIME= 8000 THTADD = 1.840 Cpe -0.1474
NACA0015  VORTICITY MAX = 474,34 MIN = -47454
ROUND TE INCBY 8.00 TO 80.00 THEN BY 200.00
0.75
0.50
025
Y 000 |
-0.25 -
-0.50 L
-0.75 -
R /-0,50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
, X

FIG. 2 VORTICITY CONTOURS FOR FLOW PAST A NACAQ015 AIRFOIL,
Re = 10,000, o = 0°, t = 8.00.

MANEUVERING THETA = 13.651 DEG CL= 3.1485
RE = 10000.0 THTADOT = 0.200 Cp= 0.3413
TIME=  9.300 THTADD =  0.000 ‘ Cyve -0.4151
NACA0015  VORTICITY MAX = 729.22 MIN = -2263.13
ROUND TE INCBY 8.00 TO 80.00 THENBY 200.00

—_— S
A SS— —

FIG. 2 CONT. ENLARGED VIEW OF LEADING EDGE DEPICTING EVOLUTION OF
DYNAMIC STALL, Re = 10,000, o = 13.651°.
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INERTIAL VS BODY FIXED OBSERVER

&
=2
/
N\
A / &
4 / A
! = / Body Fixed
__.\ Generalized

T

B -~
Ode P]-)‘—ed

artesfan

~—

Inertial Observer

R
Inertial Observer Body Fixed Observer
(Apparent)
Position of Fluid Particle: I r
Velocity of Fluid Particle: Vi |%
Acceleration: ajy B a B
Vorticity: o=V xV w=VxV
KINEMATICS

Fr=rg(t)+7
Vi =Vu(t)+V +Qp(t) x 7
a; = aB/](t) +a+ 2(23(25) xV+ &B(t) X T+ QB(t) X Qg(t) X7

Wy = VX {VB/I(t) + V+ Qg(t) X 1_'}
04V xV+2Q5(1)

]

= w+ QQB(t)
Arbitrary Maneuver Defined by: Fp/1(t) ]
Va/i(t) = ;—;’i Qs(t)
agi(t) = A ap(t) = 42
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UNSTEADY INCOMPRESSIBLE
NAVIER-STOKES EQUATIONS

INERTTIAL OBSERVER

PRIMITIVE VARIABLES

Continuity
V-Vi=0

Linear Momentum (Bernoulli’s Form)

"~

%‘?——k(VxVI)x171+—}%:;(VxVxVI)=—V(p+l- |2)

[}

VELOCITY-VORTICITY

Continuity
V-Vi=0
Kinematic Definition of Vorticity
VxVi=ar
Vorticity Transport
0wy

- = 1 _
W-{-VX(&J[XVI)-}-E;(VXVXLU[):O
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UNSTEADY INCOMPRESSIBLE
NAVIER-STOKES EQUATIONS

BODY FIXED (APPARENT) OBSERVER

PRIMITIVE VARIABLES

Continuity )
vV-V=20
Linear Momentum (Bernoulli's Form)
8—‘14—& (t)xf—{—(VxV) x V420 (t)xV+—1—(V VxV)=
ot B R - 5 . Re X VX ) -
AT 0 =12
_v(p+| 5 +(—13/1(t)'7:'—m8(#‘—)

“

-

VELOCITY-VORTICITY
Continuity .
V-Vi=0
Kinematic Definition of Vorticity
V x VI =Wy

Vorticity Transport

Oy R 1 -

7+Vx(u1xV)+E(Vxwa1)=0
Kinematic Relationship Between Apparent and Inertial Velocity

V= V[ - VB/[(t) — Qg(t) XTr

e  Solve For Inertial Velocity and Inertial Vorticity
Directly in Body Fixed Frame

e  Form of Governing Eqgs. Unaltered
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Inertial Velocity Boundary Conditions Remain Unaltered

Only Differences Are
° Inertial Vorticity Advects with Apparent Velocity

o Additional Vorticity is Created at Body Surface Due
to Acceleration of Body
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SRR

For Two-Dimensional Flow, use

DISTURBANCE STREAM FUNCTION-VORTICITY
FORMULATION IN GENERALIZED BODY FIXED
COORDINATES

Definition of Disturbance Stream Function (Deviation from Uniform
Flow)

YINERTIAL = [y + U] + wPT5(€Y, €3,1)

Where ¥, is at yet an Unknown Integration Constant Representing

a Displacement of the ZERO STREAMLINE at INFINITY

g %
3 / 52
98(0[\ / <
3/ - g.z
?9\‘@\ = -
A \1'1

Arbitrarily Maneuvering

YIneRTIAL = [z cos () — z'sin 0(t) + W] + P15 (€", €%, ¢)
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ELLIPTIC STREAM FUNCTION PROBLEM

9 (g2 3!1’?15 9 [gu opp’s —
ae (75 ) + o (G700 ) = -vm

Subject to the Boundary Conditions
$PI% =0 at INFINITY

Y1 = {2’V (t)—cos 8(t)]| < [VZ, (t)—sin 0(0]—@[(?)”@2)2”

Along Body Surface .

b1 =y ’
S
v,
b

wPIS = g

at INFINITY

STRICTLY AN INVISCID EFFECT (ALL VISCOUS
DISTURBANCES DISSIPATE WELL BEFORE INFINITY)

DIRECTLY REPRESENTS UNDERLYING INVISCID
CIRCULATION SET BY AN INVISCID KUTTA CONDITION AT

TRAILING EDGE

143



KUTTA CONDITION FOR ¥,
(WEDGE TRAILING EDGE)

~
2
BL Ocay /‘ |
ISeetor - /
/
~ /
== ~3 /
\__) 1 Branch
=~ o E) Cut
~a ,;;
1 a DIS
lim ¢1NVISCID} _

BRANCH CUT Vo o’
[{cos 0(t) — V3;(t) + 2Q5()}er + {5in 0(2) — V&,1(t) — ='Qp(t)}es)] -
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VORTICITY TRANSPORT

Oowy

Vi + 55‘1 (“HVaV) + 5 - (Hvav) =
1 6 g22 8w, (9 g 6(4)1
JAY (f ae*) " og (f a£2>
where

Vi [{cos(t) — Vé,l(t) + z2Qp(1)}é; + {sin 0(t) - /I(t) - z!Qp(t)}e,] - &, ayPIs
‘/57 911/\/_ 0¢?

[{cosb(t) — Vg, (t) + 22Qp (1) }é; + {sind(t) - Vi) — 2'Qp(t)}e,] - &, dyPIs

2 __
Vav' = 922/\/9 o¢!

Subject to the Boundary Condition

w} =0 at Infinity

and Along the Body
g2z awDIS’ o 911 8¢DIS
_\/_ 661 (\/— 361 Sy 0{2 \/— 862

Subject to the Constraint

g11 a’/’PIS 1 2 - . 2 1 | A7
g oer = eos0(t)=Ve; (1)+2"Qp (1) }er+{sin 0(t) =V, (1) -2'2s (1) }éal
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1T

THE PITCH UP MANEUVER OF
VISBAL AND SHANG

A
4 /
/
() f\ '
3/
i-a\&\ —= -~
Fei(t) = 0
VB/I(t) =0
ap(t) =
Oa(t) = 0, [t = (1)1 - exp ()0
() = =1, (1 - exp—(22)1)
a(t) = ~(3°) exp ~(22)1

Where

2, - Nondimensional Pitch Rate; 0.2
t, - Nondimensional Acceleration Time; 0.5

z, - Pivot Axis Location Measured from Airfoil LE; 0.25
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